基于注意力机制的车辆轨迹预测模型
CSTR:
作者:
作者单位:

中国矿业大学(北京)人工智能学院,北京 100083

作者简介:

韦鹏飞(2002—),本科,研究方向:车辆轨迹预测。

中图分类号:

TP183


Vehicle trajectory prediction model based on attention mechanism
Author:
Affiliation:

College of Artificial Intelligence,China University of Mining and Technology( Beijing),Beijing 100083 ,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对于自动驾驶系统而言,准确预测车辆轨迹是提高道路安全性和驾驶舒适性的关键。基于长短时记忆网络(LSTM)和注意力机制,文章提出了一种改进的车辆轨迹预测模型。通过引入时空注意力机制,该模型能够自适应地聚合车辆历史轨迹和周围环境信息,从而更准确地预测未来轨迹。实验结果显示,与传统LSTM 模型相比,该模型在所有预测时间点上均显示出更低的根均方误差,且其性能提升在长期预测任务中更为显著。这证实了注意力机制在处理车辆轨迹预测长期依赖问题上的有效性。

    Abstract:

    For auto drive system, accurate prediction of vehicle trajectory is the key to improve roadsafety and driving comfort. Based on Long Short Term Memory (LSTM) network and attentionmechanism, this article proposes an improved vehicle trajectory prediction model. By introducingspatiotemporal attention mechanism, this model can adaptively aggregate vehicle historicaltrajectories and surrounding environmental information, thereby more accurately predicting futuretrajectories. The experimental results show that compared with traditional LSTM models, this modelexhibits lower root mean square error at all prediction time points, and its performance improvementis more significant in long-term prediction tasks. This confirms the effectiveness of attentionmechanisms in addressing the long-term dependency problem of vehicle trajectory prediction.

    参考文献
    相似文献
    引证文献
引用本文

韦鹏飞,陈正杰,韦行,李孟益.基于注意力机制的车辆轨迹预测模型[J].计算机应用文摘,2024,40(20):162-164

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-10-29
文章二维码