基于ResNet34算法的病虫害识别
DOI:
作者:
作者单位:

山东青年政治学院信息工程学院,济南 250103

作者简介:

孙连云(1976—),硕士,副教授,研究方向:计算机软件开发和教学。

通讯作者:

中图分类号:

TP391

基金项目:


Pest and disease recognition based on ResNet34 algorithm
Author:
Affiliation:

School of Information Engineering,Shandong Youth University of Political Science,Jinan 250103 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    病虫害严重影响农业和环境的可持续发展,导致农作物产量损失和品质下降。深度学习技术为病虫害识别和防治提供了新方法,在识别准确率和效率方面具有独特优势。在探究和学习深度学习技术特点与算法优缺点的基础上,文章探讨其在番茄、葡萄、苹果3类经济作物病虫害研究中的应用, 主要分析了ResNet网络模型对这些作物的病虫害图像识别和分类的精度问题,并对ResNet网络的训练损失、验证损失、验证准确率进行了分析。实验结果证明,ResNet网络模型对于病虫害图像具有较高的识别准确率,达到了94.54%。

    Abstract:

    Diseases and pests seriously affect the sustainable development of agriculture and the environment, leading to crop yield loss and quality decline. Deep learning technology provides new methods for identifying and controlling pests and diseases, with unique advantages in recognition accuracy and efficiency. On the basis of exploring and learning the characteristics of deep learning technology and the advantages and disadvantages of algorithms, this article explores its application in the research of pests and diseases in three economic crops: tomatoes, grapes, and apples. It mainly analyzes the accuracy of ResNet network model in recognizing and classifying pest and disease images of these crops, and analyzes the training loss, validation loss, and validation accuracy of ResNet network. The experimental results demonstrate that the ResNet network model has a high recognition accuracy of 94.54% for pest and disease images.

    参考文献
    相似文献
    引证文献
引用本文

孙连云,李国印.基于ResNet34算法的病虫害识别[J].计算机应用文摘,2024,40(22):191-193

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-22
  • 出版日期:
文章二维码
关闭