端到端优化的视频编解码技术研究
DOI:
CSTR:
作者:
作者单位:

南京熊猫通信科技有限公司,南京 210000

作者简介:

吴胤鹏(1995—),本科,助理工程师,研究方向:通信工程。

通讯作者:

中图分类号:

TN919

基金项目:


Research on end-to-end optimized video encoding and decoding technology
Author:
Affiliation:

Nanjing Panda Communications Technology Co.,Ltd.,Nanjing 210000 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章深入探讨了端到端优化的视频编解码技术,通过整合视频采集、编码、传输、解码等环节,该技术可以实现对视频数据的高效压缩与高质量传输。随着深度学习技术的发展,基于深度学习的端到端视频编解码方法逐渐兴起,依托神经网络模型强大的学习能力,实现了对传统视频编解码算法的超越。文章首先介绍了端到端视频编解码技术的背景与意义,随后详细阐述了其关键技术,包括基于深度学习的视频压缩算法、多尺度特征的运动补偿、多参考帧的辅助预测帧生成等。通过对比实验,文章展示了端到端优化视频编解码技术在提高压缩效率、减少传输延迟、提升视频质量等方面的显著优势,同时总结了当前研究的成果,并对未来研究方向进行了展望。

    Abstract:

    This paper deeply discusses the end-to-end optimized video codec technology,which can realize efficient compression and high-quality transmission of video data by integrating video capture,encoding, transmission and decoding. With the development of deep learning technology,end-to-end video codec methods based on deep learning have gradually emerged. Relying on the powerful learning ability of neural network models, they have surpassed traditional video codec algorithms. This paper first introduces the background and significance of end-to-end video codec technology,and then elaborates its key technologies,including video compression algorithm based on deep learning,motion compensation of multi-scale features,and auxiliary prediction frame generation of multi-reference frames. Through comparative experiments,this paper demonstrates the significant advantages of end-to-end optimized video codec technology in improving compression efficiency,reducing transmission delay,and improving video quality. At the same time,the current research results are summarized, and the future research direction is prospeced.

    参考文献
    相似文献
    引证文献
引用本文

吴胤鹏.端到端优化的视频编解码技术研究[J].计算机应用文摘,2025,41(3):186-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-14
  • 出版日期:
文章二维码